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Abstract—Logistic regression (LR) is used in many areas due
to its simplicity and interpretability. While at the same time,
those two properties limit its classification accuracy. Deep neural
networks (DNNs), instead, achieve state-of-the-art performance
in many domains. However, the nonlinearity and complexity of
DNNs make it less interpretable. To balance interpretability and
classification performance, we propose a novel nonlinear model,
Deep Embedding Logistic Regression (DELR), which augments
LR with a nonlinear dimension-wise feature embedding. In
DELR, each feature embedding is learned through a deep and
narrow neural network and LR is attached to decide feature
importance. A compact and yet powerful model, DELR offers
great interpretability: it can tell the importance of each input
feature, yield meaningful embedding of categorical features, and
extract actionable changes, making it attractive for tasks such as
market analysis and clinical prediction.

Index Terms—interpretability, accountability, actionability,
classification

I. INTRODUCTION

Classification has been studied for decades, during which
numerous algorithms including logistic regression (LR), k-
nearest neighbors (KNN), support vector machine (SVM),
decision trees (DT), random forest (RF) and deep neural
networks (DNNs) have been proposed. Many of them can
achieve high accuracies. For example, DNNs can outperform
humans in image recognition tasks [1]. However, classification
remains a challenging problem as prediction accuracy is not
the only concern in many scenarios.

In particular, many tasks calls for interpretability of the
model, which entails: 1) accountability (revealing the signif-
icance of each feature), 2) actionability (identifying changes
to input features that can turn the model output to a desired
label), and 3) quantification of categorical features. In areas
such as market analysis and clinical prediction, these three
properties are critically needed in addition to high accuracy.
For example, in clinical prediction of ICU transfers, in addition
to accurate prediction, doctors need to know the contributing
factors that triggered the alert (accountability), which factors
can be quickly altered to prevent the ICU transfer (action-
ability), and how categorical features such as disease type
and medication records affect the prediction (quantification).
Unfortunately, most existing algorithms cannot balance these
competing needs well.

LR is widely used, especially on high-dimensional cases,
due to its simplicity and efficiency. Moreover, LR offers

accountability and actionability. Weights in LR can measure
feature importance and tell how we can alter certain features
with a minimum cost to achieve a desired output. However,
being a linear classifier, LR has limited separation ability and
generally low accuracy. In addition, categorical features are
not naturally supported by LR.

Kernel Logistic Regression (KLR) has nonlinear separation
ability with the use of kernel functions, which implicitly maps
features into a high-dimensional space [2]. Without explicit
mapping, interpreting the model output is nearly impossible.
This is also the case with most kernel methods such as kernel-
based SVM. Density-based Logistic Regression (DLR) avoids
this limitation through dimensional-wise transformation by
applying kernel estimators [3]. However, DLR cannot handle
large-scale dataset. For a dataset with N instances and D
dimensions, the training time complicity for DLR is between
O(DN2) and O(DN3), which is expensive for datasets with
a large number of instances. Also, DLR requires O(DN) time
to evaluate an instance, which is again expensive for real-time
testing.

DNNs keep breaking records in applications such as image
classification [4], speech recognition [5] and objection detec-
tion [6]. However, the prediction results of DNNs are known
to be very hard to interpret due to the extreme nonlinearity
and complexity of the model [7]. The lack of interpretability
greatly restricts their prevalence in fields such as clinical pre-
dictions [8] and business intelligence [9] where explanation,
insights, and actionability are much needed.

In this paper, we proposed an end-to-end logistic regression
model, deep embedding logistic regression (DELR), which
incorporates LR with deep learning based feature embedding.
By taking the advantage of DNNs’ superior expressing power,
each feature is first transformed into nonlinear representation
before being fed into a LR layer. DELR has high efficiency by
leveraging GPU computing. Nonlinear feature transformation
equips DELR with nonlinear separation ability. Using deep
embedding, we can also naturally handle and quantify cate-
gorical features, which is not supported by LR. Last but not
least, accountability and actionability are offered by the LR
layer.

In summary, our contributions are as follows.
1) We propose DELR, a classifier that offers scalability,

nonlinearity, support for mixed data types and excellent inter-



pretability.
2) We analyze and demonstrate the model accountability

and actionability of DELR through case studies.
3) We empirically validate the accuracy performance of

DELR as compared with existing interpretable methods in-
cluding LR, DT, DLR and gradient boosting decision stumps
(GBDS). Commonly used non-interpretable models such as
SVM-rbf, random forest (RF) are also tested for reference.

4) We visualize the quantification of categorical feature
embedding and further verify the interpretability of DELR.

5) We apply DELR on a real-world clinical dataset and show
how interpretability can help doctors make decisions.

II. PRELIMINARIES

In this section, we introduce the notations and briefly review
the limitations of LR and its extensions.

Suppose we are given a dataset D = {xi, yi}Ni=1 with N
instances, where xi and yi are D dimensional feature vector
and label of instance i, respectively. Each feature vector is
the concatenation of two types of feature vectors, numerical
feature vector xRi ∈ RD1 and categorical feature vector
xCi = ([xCi ]1, [x

C
i ]2, ..., [x

C
i ]D2

). Each element in xRi is a
real number and each element in xCi is an ordinal number.
DELR can handle both binary and multi-class classification.
For ease of presentation, we consider binary classification
where yi ∈ C = {0, 1}. Dk contains all the data samples
with label k. Multi-class classification can be easily supported
by replacing LR with softmax regression classifier.

A common way for many classifiers to handle categorical
features is one-hot encoding, which converts a categorical
feature to a numerical vector. However, one-hot encoding is
known to be prohibitively expensive when the cardinality is
high.

LR models the conditional probability of y given an instance
x using a sigmoid function:

p(y = 1|x) = σ(wTx) =
1

1 + exp(−wTx)
(1)

where w is weight parameters to be learned, making the
decision boundary a hyperplane. The confidence score is
controlled by the weighted sum of input features. LR assumes
that there is a monotonic relationship between p(y = 1|x)
and xd, while in practice often does not exist. DLR was
proposed to fix this problem by embedding each feature xd
into a nonlinear representation:

Φ(x) = (φ1(x), ..., φD(x)).

By assuming all the attributes of x are conditionally inde-
pendent given the label y, each attribute was represented using
logit transformation:

φd(x) = ln
p(y = 1|xd)
p(y = 0|xd)

. (2)

DLR supports both numerical and categorical attributes. For
categorical attributes, p(y = 1|xd) is estimated by calculating
the proportion of positive samples among all the samples
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whose dth attribute is xd. We use Dxd
to denote the set of

samples in D. The DLR estimates is

φd(x) = ln
|D1

⋂
Dxd
|

|D0

⋂
Dxd
|

(3)

For continuous attributes, DLR uses a kernel density estimator
with bandwidth hd to estimate φd(x). The DLR estimate is

φd(x) = ln

∑
x′∈D1

exp(− (xd−x′
d)

2

h2
d

)∑
x′∈D0

exp(− (xd−x′
d)

2

h2
d

)
(4)

In DLR, the above nonlinear feature embedding is fed into
an LR model for classification. Although DLR has nonlinearity
and accountability, some serious drawbacks restrict its preva-
lence. First, DLR cannot be used in large scale datasets and
real time applications due to its time complexity as discussed
before. Second, DLR is an ad-hoc method, separating feature
preprocessing and classification procedures. The expressing
power of DLR is thus limited.

III. DEEP EMBEDDING LOGISTIC REGRESSION

In this paper, we propose a deep embedding logistic regres-
sion (DELR) framework, in which, no prior assumption for
data distribution is needed. Instead of using kernel based esti-
mator, we use deep neural networks for dimension-wise feature
embedding. The overall architecture of DELR is depicted in
Fig. 1. DELR contains three different blocks: numerical feature
embedding block, categorical feature embedding block and
logistic/softmax regression block.

A. Numerical Feature Embedding Block

For the numerical part, each feature is not necessarily in
a monotonic relationship with class probability. To address
this problem, we apply a multi-layer perceptron (MLP) for
the numerical feature embedding as MLP has the ability to
learn complex feature representation automatically. In order to
reduce the total number of parameters to be learned, we design
a deep and narrow MLP as shown in Fig. 1. Although the
feature embedding block has 6 layers, each of which contains
only 4 hidden neurons. Thus, the total number of parameters



is only 80. Compared with classical MLP that has millions
of parameters, our model greatly reduced the learning time
in updating each parameters, being able to handle very high
dimensional dataset. Rectified linear unit A(x) = max(x, 0) is
used as activation function between two adjacent layers. Batch
normalization [10] is also applied before every activation
function. The input and output dimension of numerical feature
embedding block are one. After the conversion, we have

fd(x) = A(bnhd +Wnh
d A(· · ·A(b1d +W 1

dxd))) (5)

where nh is a user defined number of hidden layers.

B. Categorical Feature Embedding Block

Suppose the categorical part xC has D2 features, xC =
(xC1 , ..., x

C
D2

). The dth categorical feature has Kd categories,
xCd ∈ {1, 2, ...,Kd}.

The first component of the categorical feature embedding
block is a lookup table that contains a numerical embedding
for each category as shown in Fig. 1. The number of embed-
dings of each feature is equal to the number of categories of
the corresponding categorical feature. At its core, each lookup
table is a matrix Ud ∈ Rk×Kd where each column vector
represents a k dimensional embedding for a corresponding
category. k > 0 is a user defined integer. For example, in Fig.
1, we have k = 4. Each categorical feature would retrieve
its corresponding embedding in the lookup table as its new
feature representation.

Mathematically, we let udi be the ith column vector in
lookup table Ud. After embedding retrieve, we have the new
feature representation ed(xC) = udi .

This new representation is then fed into a new numerical
feature embedding block to get the univariate output,

gd(x) = fD1+d(u
d
i ) (6)

C. Classification

After obtaining the embedding for both numerical and
categorical features, DELR concatenate them together to form
a new representation, Φ(x), for the original input x. Note that
each feature in the new representation can be traced to its
corresponding raw attribute. Now we have

Φ(x) = (f1(x), ...fD1
(x), g1(x), ..., gD2

(x)) (7)

We let φi(x) to denote the ith element of Φ(x).
LR is then used to estimate the probability that a given input

is positive. We can extend our model to support multi-class
classification by replacing LR with softmax regression.

Following the same training procedure as softmax regres-
sion, we minimize the cross entropy between true label
distributions and prediction distribution. The embedding of
each single dimension is learned jointly through stochastic
back-propagation. To reduce the effect of over fitting, `2
normalization is applied when training the model.
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Fig. 2. Probability output of DELR on a toy example. The green dot represent
an instance with the input value of {1.2, 0.8}. The red arrows are extracted
actions to flip the label of greed dot.

IV. DISCUSSIONS

In this section, we discuss the nonlinearity, interpretability,
i.e. accountability and actionability of our proposed DELR
model through a toy dataset shown in Fig. 2. We use red
pluses and white circles to denote the positive and negative
instances, respectively.

Nonlinearity. This dataset is not linearly separable as we
cannot draw a single line that can perfectly split those two
categories. LR obviously fails here. We train a DELR model
using this toy dataset, and draw the probability output in
this 2-D space. As we can see from Fig. 2, the decision
boundary is a smooth circle, containing all the red pluses.
The power of nonlinear separability granted by DELR yields
a very reasonable separation curve on this 2-D space.

Accountability. Accountability refers to model’s ability to
reveal the significance of each feature in making the final
prediction for some instance. In DELR, each attribute xi is
first transformed into φi(x) through numerical feature mapping
layer. Final prediction is determined by the sign the following
equation,

w1φ1(x) + w2φ2(x) + b (8)

where b is the bias term. For this toy dataset, we find
b = 0 after training. To discover the contribution of each
input feature to the final prediction, we plot the value of
w1φ1(x) and w2φ2(x) with the change of x1 and x2 in Fig.
3. These two figures clearly illustrate the correlation between
the feature value and its corresponding contribution, which is
not monotonic as in LR. We call them coordinate plots in the
rest of the paper.

Now suppose we are given a data point (x1, x2) =
(1.2, 0.8), which is plotted as a green dot in Fig. 2. The model
predicts it as negative. We can get the contributions of the two
dimensions from Fig. 3, which are −0.21 and −8.4. At this
point, both features are making negative contributions to the
final prediction. Note that such accountability is not offered
in neural networks. This is because features are intricately
interwoven in the hidden layers of neural networks, making
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Fig. 3. The contribution of each input attribute for the final prediction. Left:
The correlation between x1 and the first component of Equation 8. Right:
The correlation between x2 and the second component of Equation 8.

it hard to account for each feature’s contribution to the final
outcome.

Actionability. Actionability is a much desired property in
areas such as clinical prediction and market analysis. Classi-
fiers need to not only identify critical features that lead to the
prediction, but also make recommendations on how to change
these features in order to clear the threats or achieve goals.

A practical constraint we should consider is that we can
only change a limited number of input features. For example,
in clinical predictions, it may be impractical to change all
features of a patient simultaneously. Instead, we aim to make
small changes to one or a few features, such as temperature,
blood pressure or pulse, which are enough to revert the label.

In LR, each feature is independent, and has a constant slope
in its contribution curve due to LR’s linearity. Thus, we can
make small changes on a few features with the largest absolute
weights (slopes). In DELR, we can also look at the slope of
each feature in the contribution curves as in Fig. 3. However,
the slope is no longer a constant everywhere. Thus, we propose
an iterative algorithm which selects features to change one by
one. For an instance x that we want to revert its label, our
iterative action extraction algorithm first selects the feature d
with the maximum slope

∣∣dφd(x)
dxd

∣∣ and updates it by a small
step. Then, the algorithm again selects the feature with the
largest slope, but at the updated point. The process is iterated
until reaching a budget. The selected features are returned for
making changes.

The slope can be calculated through backpropagation from
the second to last layer, or using the finite element method,
both of which are computationally efficient. We use the same
cost for changing each feature by a unit. The cost can also be
non-uniform as we can use step sizes inversely proportional
to the costs.

Let’s again use the green dot in Fig. 2 for demonstration.
Now that we know the label of this instance is negative, we
want to make some changes on the input features to revert its
label. Suppose we have a budget B = 2 and step size 0.25. At
first, the slope of x1 is larger, as seen from Fig. 3. Thus, the
point moves left for 0.25. At the next point, the slope of x2
becomes larger than that of x1. Thus, the point moves down
for 0.25 and reaches the positive region. In comparison, if
we stick to one feature and do not iteratively update the slope

calculation, it will cost more to reach the positive region either
moving down or moving left.

V. RELATED WORK

DELR is designed to preserve the interpretability with
minimum sacrifice on the prediction performance.

Accountability has been studied for a long time. To reveal
the feature importance, two different kind of algorithms have
been proposed. The first category relies on analyzing the
model directly. For example, the feature importance of LR
and DLR is indicated by its corresponding weight parameters.
When growing trees, RF can memorize the information gain
for each feature and use this as an indicator of feature
importance. Instead of identifying single feature importance,
fast flux discriminant [11] first generates subsets of features
and then use LR to identify the importance of subsets. The
second category post-processes the well trained model when
given an input instance. To check whether the prediction of
DNNs is based on the right region of the image, guided back
propagation [12] was proposed. Provided with an image and
the well trained CNN, they run back propagation on the image
space and visualize pixels corresponding to larger gradient
values as important features. For DELR, we can not only
show the feature importance using weight parameter, but also
visualize the trending of each feature as it changes.

Among all classifiers, DELR resembles to gradient boosted
decision stumps (GBDS) [13] most in terms of individual
feature transformation. Different from gradient boosted deci-
sion trees (DBDT) [14], GBDS is an ensemble of one level
decision trees. For each decision stump, only a single feature is
used for classification. After training the GBDS, we can group
decision stumps with same features together and draw plots
similar to Fig. 3. However, the coordinate plot of DELR is
much smoother than GBDS, leading to better generalizability.
We will compare the model performance in the experimental
section.

Compared with accountability, extracting knowledge from
machine learning model is an even harder task. Rule based
algorithms can be post-analyzed through pruning and summa-
rization [15], [16]. In [17], the authors use a greedy algorithm
to provide actions that can maximize the expected profit from
the decision tree. Despite their actionability, decision trees can-
not achieve high accuracy. Reference [18] further proposed an
integer linear programming (ILP) algorithm to extract optimal
actionable knowledge from random forests. However, ILP is
a NP-Complete problem, restricting its usage in large scale
datasets. For deep neural networks, meaningfully actionable
knowledge is hard to extracted due to model complexity
[19]. DELR inherits all the advantages of LR, especially
efficiency, accountability, and actionability, making it capable
of extracting knowledge from various kinds of datasets.

VI. EXPERIMENTS

We conduct extensive experiments to evaluate DELR on
several benchmark datasets. We first test the performance of



TABLE I
PERFORMANCE OF VARIOUS METHODS ON VARIOUS UCI DATASETS. NOTE THAT LR, DT, DLR AND DELR HAVE ACCOUNTABILITY. LR, DT, DLR,

GBDT AND DELR HAVE ACTIONABILITY. ”N/A” INDICATES MEMORY OVERFLOW.

Dataset breast cancer splice musk mushroom mnist38 nursery adult census-income
N 683 1,000 6,598 8,124 11,982 12,960 30,162 299,285
P 9 60 166 22 784 8 14 41
Data-type Numerical Categorical Numerical Mixed Numerical Categorical Mixed Mixed
LR 89.70±5.33 81.50±3.05 95.13±0.61 100±0.00 96.87±0.36 91.93±0.85 84.01±0.20 94.97±0.07
DT 90.70±1.27 87.80±1.94 96.49±0.66 100±0.00 96.10±0.26 98.61±0.14 79.56±0.41 93.06±0.07
DLR 96.42±1.61 92.40±2.68 95.20±0.74 100±0.00 N/A N/A N/A N/A
GBDS 92.99±1.89 92.20±1.36 95.60±0.41 99.95±0.41 96.12±0.24 92.32±0.39 84.20±0.34 95.00±0.03
DELR 97.57±1.16 93.00±0.55 97.57±1.16 100.00±0.00 96.05±0.38 92.83±0.38 84.57±0.28 95.43±0.14
SVM-rbf 93.27±1.95 91.80±1.72 95.08±5.99 100±0.00 97.83±1.23 98.01±0.33 83.12±0.46 94.26±0.14
RF 94.27±1.62 94.50±2.11 97.39±0.25 100±0.00 98.73±0.25 99.06±0.21 83.82±0.21 95.25±0.09

DELR on UCI datasets1, which contain both numerical feature
datasets and mixed-type feature datasets. Then we exhibit the
convenience and interpretability on classifying a large-scale
dataset with a huge amount of categories. All tested datasets
are publicly available.

A. Experimental setup

We compare DELR with the following four interpretable
methods, 1) Logistic regression with `2 regularization (LR).
2) Decision Tree (DT) 3) Density-based Logistic Regression
(DLR). 4) Gradient boosted decision stumps. We also add the
performance of Support Vector Machines with RBF kernel
(SVM-rbf) and Random Forest (RF) for reference. We imple-
ment DELR using PyTorch [20] and will release the code after
publication. LR, DT, GBDS and RF are implemented with the
scikit− learn package [21]. The SVM-rbf is implemented by
libSVM [22]. DLR is downloaded from the authors’ homepage
[3].

All the experiments are run on an off-the-shelve desktop
with two 8-core Intel(R) Xeon(R) processor of 2.67 GHz,
128GB RAM and a Tesla P100 GPU. For each dataset, we run
5 fold cross validation and report the average performance and
standard derivation. We further hold out 1/3 from the training
set as the validation set. All algorithms are trained on the
training set, choosing hyper-parameters based on the validation
set and evaluated on the test set in each fold. Hyper-parameters
are selected for all algorithms with Bayesian optimization [23]
implemented in the spearmint2 package.

B. Evaluation on UCI datasets

We evaluate the performance of DELR on several UCI
benchmark datasets as shown in Table I. We show the dataset
statistics on the left part of the table and the test accuracy on
the right part. Here, N, P and Data-Type represents the number
of instances, the number of features and data type in each
datasets, respectively. We try to include datasets of different
scales, covering small sized dataset such as ”breast-cancer” to
large scale datasets such as ”census-income”. Among all these
datasets, ”adult”, ”mushroom” and ”census-income” contain
both categorical feature and numerical features. ”splice” and

1https://archive.ics.uci.edu/ml/datasets.html
2https://github.com/JasperSnoek/spearmint

TABLE II
SUMMARY OF THE TRIPTYPE DATASET

Feature Name #Categories
VisitNumer 95,674
Weekday 7
UPC 97,715
ScanCount 39
adultDepartment Description 69
Fineline Number 5,196

TABLE III
TEST ACCURACY ON THE TRIPTYPE DATASET

Dataset SFT DT DELR
Triptype 71.41% 61.86% 72.59%

”nursery” only contain categorical features while the rest
datasets only have numerical features.

From Table I, we can make the following observations.
First, LR, the linear classifier performs the worst for the
most of the time. Second, DELR performs the best among
all classifiers on six out of eight datasets, demonstrating
its superior nonlinear separability. For dataset nursery, DT
outperform the rest interpretable models by a large margin,
indicating the highly complex distribution of this dataset. Rule
based algorithms handle extreme cases better in this case.
DLR come across memory overflow on four largest datasets
and DELR outperform DLR on all datasets, demonstrating
the superior of deep feature embedding compared with kernel
density estimator. In addition, DELR is time efficient. The
running time on the smallest dataset is less than one minute
and it takes about 3 hours to train the largest dataset. As we are
using stochastic gradient descent, training time is proportional
to the number of instances.

We further perform action extraction on adult datasets,
determining whether a person makes over 50K a year. Given a
negative instance, the algorithm suggests the person to switch
his work class to Self-emp-inc or achieve doctoral education
level. Further, if we set the cost of changing categorical fea-
tures to a large number, then the algorithm suggests increasing
working hour, which is quite reasonable.



C. Evaluation on the Walmart dataset

We evaluate DELR on triptype3, a large real-world market
analysis related dataset with many categories to demonstrate
the distinctive advantages. This dataset is a transactional
dataset of items purchased at Walmart. The goal of the task
is to predict the type of each customer trip, which would
help Warlmart’s decision making in business and improve
customers’ shopping experiences. There are 38 trip types in
total including a small daily dinner trip, a weekly large grocery
trip, and so on. This dataset contains 647,054 instances, each
of which contains 6 categorical features4 .

The difficulty of mining this dataset lies in the huge amount
of categories as shown in Table II. There are in total 198,700
distinct categories, leading to a 198,700-dimensional feature
vector if one-hot encoding is used. Few classifiers can handle
this dataset directly.

We only show the results of softmax regression (SFT),
DT and DELR as RF, SVM-rbf and DLR cannot achieve
any meaningful results within one day on this dataset even
with state-of-the-art packages. For DELR, we adopt the same
architecture as the previous experiment. We intentionally use
the raw feature without any feature engineering. We show the
test performance of each method on Table III. We can see that
DELR again outperforms all the other classifiers.

Another advantage of DELR is that it can learn meaningful
feature embedding and quantify categorical features. We inter-
pret the category correlation through visualizing the output of
the nonlinear feature embedding block. We set the embedding
dimensionality to 2 and train DELR from scratch till it con-
verges. Next, we plot the categories using their embeddings as
coordinates. As ”Department Description” is the only feature
whose semantic meaning of each category is released, we only
present the visualization of this feature, which contains 69
categories as shown by blue circles in Figure 4. Due to space
limit, we are not allowed to show all the category names in
the figure. We can observe that similar categories are located
closely while dissimilar categories are far away from each
other. We can find many surprisingly meaningful clusters. In
Fig. 4, the red cycle covers clothes related features, such
as ”ladies’ wear”, ”mens’ wear”, etc. There are also some
clusters relating to food, home decoration, horticulture, and
so on. These results indicate that DELR learns meaningful
embeddings, which helps knowledge extraction and further
augments interpretability.

VII. EVALUATION ON REAL WORLD CLINICAL DATASET

In this section, we apply DELR onto a real-world clinical
dataset, performing 30-day postoperative mortality prediction.
This work is done in partnership with Barnes-Jewish Hospital
(BJH), one of the largest hospitals in the United States. Our
data includes all preoperative, intraoperative and postoperative
data combined with other inpatient and outpatient EMR data.

3https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
4Note that only the training set is available online, we randomly select 70%

as the training set and the rest as the test set.

1. Furniture
2. Home Management
3. Bedding
4. Bath and shower
5. Cook and dine
6. Celebration
7. Fabrics
8. Paint
9. Household goods

1. Dairy
2. Meat
3. Seafood
4. Service Deli
5. Liquor, wine
6. Comm bread
7. Pre packed Deli
8. Frozen food

1. Swimwear
2. shapewear
3. Accessories
4. Boys’ wear
5. Ladies’ wear
6. Sleepwear
7. Girls’ wear
8. Men’s wear
9. Ladies’ socks
10. Maternity

Fig. 4. The embedding for the ”Department Description” feature. Each point
in this figure represents a unique category. We show three representative
clusters.

TABLE IV
EXPERIMENTAL RESULTS ON 30-DAY MORTALITY PREDICTION. DELR

OUTPERFORM ALL THE BASELINE METHODS.

Method AUROC AUPRC Specificity Sensitivity
DT 0.6513 0.0598 0.95 0.3398
LR 0.8455 0.0749 0.95 0.4175
GBDS 0.8658 0.0911 0.95 0.4439
SVM 0.8609 0.0823 0.95 0.4417
RF 0.8536 0.0750 0.95 0.4175
DELR 0.8725 0.0981 0.95 0.4515

More than 110,000 surgeries’ data is collected between 2012
and 2016, each of which contains 44 preoperative EMR
features and 49 vital signs. Thirty-day postoperative mortality
is used as the output label. After data screening, we randomly
split the dataset into training set (70,000 patients), validation
set (10,000 patients), and testing set (19,791 patients), at the
ratio of roughly 7:1:2.

Preoperative data are static data collected from patients
before the operations. 15 numerical features and 32 categorical
features are includes in the Pre-op data. Intraoperative data are
in the form of multi-variate time series of patients’ vital signs
and general signals monitored throughout patients’ operations,
in which, 10 vital signs are selected. We calculate its mean
and standard deviation.

Our target outcome is 30-day mortality, which has a
positive-negative ratio of approximately 1:100. We have tried
two different methods to deal with this imbalance. The first
method is to use class weights inversely proportional to their
proportion to multiply the loss of positive training examples
100 times larger than that of negative training examples. The
second method is to upsample positive training examples by
100 times each. We tested all baseline methods and DELR
and all of them perform better using the second upsam-
pling method. All the following experiments use upsampling
method.

We evaluate all the forecasting models using well-accepted
criteria including: Area Under the curve of Receiver Operating
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Fig. 5. Receiver Operating Characteristic (ROC) of the model performance
on the test set.
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Fig. 6. Precision-Recall curve of the model performance on test set.

Characteristic (AUROC), sensitivity and specificity.
In addition, as our data is extremely imbalanced, Receiver

Operating Characteristic (ROC) can be sometimes deceptive
on evaluating the model performance [24], [25]. Therefore,
we also show the Precision-Recall curve of each model and
adopt Area Under Precision-Recall Curve (AUPRC), which
measures the average precision as an additional evaluation
criterion. All the models are tuned based on the AUPRC
performance on the validation set and then report the model
performances evaluated on the testing set.

Another key metric we evaluate and compare is the sensitiv-
ity at 95% specificity since it is important to maintain a high
specificity (i.e., low false alarm rate) for meaningful clinical
decision support.

A. Baseline Methods

We compare DELR with the most wildly used classifiers,
decision tree (DT), logistic regression (LR), support vector
machine (SVM) and random forest (RF) and gradient boosted

stumps (GDBS). Categorical features are represented as one-
hot encoding vectors for baseline methods.

B. Experimental Results

Table IV shows the model performances. We observe that
DELR consistently outperforms both interpretable models and
non-interpretable models in terms of AUROC and AUPRC.
The reason DELR can beat SVM and RF is that this clinical
dataset is very easy to overfit. Our model regularizes very well
in this scenario. We will discuss more about it in the next
paragraph. Sensitivity at 95% specificity level is included in
the performance chart as well. Even under this high specificity,
DELR achieves 0.4515 sensitivity, which is much higher than
rest models. We also plot out all the ROC curves in Figure 5.
DELR achieves the highest AUROC of 0.8725. As our dataset
is extremely imbalance, the Precision-Recall curve shown in
Figure 6 contains more meaningful information. The positive-
negative ratio is approximately 1:100, indicating that random
guess can get only 0.01 AUPRC. DELR achieves an AUPRC
of 0.0981, which is nearly ten times better than random guess
and more than 30% gain compared with the LR model.

Next, we check the interpretability of DELR on this clinical
dataset. As we’ve talked in the discussions section, coordinate
plot of each feature can be drawn to visualize its relationship
with 30-day mortality. We plot out eight features, shown in
Fig. 7 and Fig. 8. The x-axis is the feature value and y-
axis is the feature contribution to the final prediction. Positive
value enhance the probability of 30-day mortality. Among
these eight plots, the first four plots in Fig. 7 show nonlinear
relationship between the input feature and final contribution
to the prediction. Classifiers such as logistic regression cannot
handle this situation. In addition, the nonlinear transformations
are also in line with our expectation. We also discover some
features remain linear after transformation as shown in Fig. 8.
Take SpO2 as an example, the higher the value of SpO2, the
less likely the patient will die within 30 days. We’ve checked
SVM-rbf and RF, no such linear relationship is found. Without
mapping all features to complex nonlinear representation,
DELR can generalize better. We will further analyze DELR
on this clinical dataset with domain experts in the future based
on coordinate plots and extract reliable suggestions from this
model.

VIII. CONCLUSIONS

Complex models such as DNNs have strong learning ability
and high accuracy. However, in many tasks such as mar-
keting and clinical prediction, LR is still a preferred choice
as it provides good interpretability and scales well. In this
paper, we propose a novel DELR model, inheriting those
nice properties of LR while overcoming its drawbacks of
linearity and inability to handle categorical features. DELR
incorporates dimension-wise nonlinear feature embedding us-
ing deep neural networks and feeds the embeddings into LR
for classification. Extensive analysis and experimental results
demonstrate that DELR is a compact yet powerful model,
achieving both high accuracy and excellent interpretability.



Fig. 7. We select four features that is not in linear relationship between the input value and 30-day mortality rate.

Fig. 8. We select four features that remains linear after feature embedding. This indicates that DELR regularizes very well, not memorizing the input data
through learning complex decision rules.
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